
Life, the Universe, and Everything
VDAQ

A Brief Monograph for Experts

or ’What I did on my summer vacation’

by EAH

August 30, 2007 23:33:33 CDT 2007

1



Disclaimer: The following document is rated ’R’ for Reprehensible. It is best viewed by

nobody. Due to the dangerous levels of sarcasm and jaded nature of the commentary, the

impressionable and/or overly optimistic reader should avert his or her eyes and hum loudly

(Disney themes recommended here) if adversely affected or maybe just burn the damn thing

outright. The opinions contained within are, of course, those of the author only and do not

reflect the views of the University of Chicago, Argonne National Lab, NASA/GSFC, or, well,

anybody really.

2



1 Introduction

In days of yore cartographers marked the bounds of their geographical knowledge with beasts,

mermaids, and monsters of the deep1. Herein lies my best attempt at summarizing what I

know of VDAQ, what I don’t know that might be problematic, and beyond that I can only

speculate about those regions that may be hiding a beastie. Sarcasm aside, the VDAQ code

is a fine and lovely thing and it’s been my pleasure to contribute what I can.

The document, or manuscript, if you will, is organized as follows: first, new additions to

the code are described in some detail and any known issues, missing features, and the like

are listed; second, less significant additions or updates to the code are discussed; third, new

scripts are outline; last, known foibles of external systems that have required some action,

i.e. software fix, are briefly reviewed. Ahoy, matey! Hic sunt dragones!

2 Significant Additions to the Code

2.1 Configuration Interface to MySQL Database

The New Class on the Block

class VDAQ VDBInterface

• Member Variables

// DB connection member vars

VDBConfig::VDBConfig* fDBConfig;

// FADC/CFD configuration member vars

unsigned int fTelescopeID;

unsigned int fCrateID;

list<VDBFADC::FADCLocation> fFADCInfoList;

1Here is a lovely dragon from a Japanese map http://www.library.ubc.ca/spcoll/dragon.gif

3

http://www.library.ubc.ca/spcoll/dragon.gif


• Methods

// DB connection control methods

void setDBHost(char* hostname) { fDBConfig->setHost(hostname); }

string getDBHost() { return fDBConfig->getHost(); }

// FADC/CFD configuration member functions

void setFADCList(int32_t, int32_t, bitset<MAX_FADC_CNT>, list<uint32_t>);

list<VDBFADC::FADCLocation> getFADCList(){ return fFADCInfoList; }

// Methods for updating database tables

void updateSlotRelation(int32_t, int32_t, int32_t, int32_t);

void updateCrate();

// Methods for reading configuration information from database

// tables

map<unsigned int,fadc_config_s> loadConfig();

map<unsigned int, unsigned int> loadCFDThresholdsmV(unsigned int);

// Some info output methods

string printCFDConfig(cfd_config_s* cfdConfig);

string printChanConfig(int32_t iChan, chan_config_s* chanConfig);

string printFADCConfig(fadc_config_s* fadcConfig);

Comments:

The methods of note are loadConfig and loadCFDThresholdsmV. Method loadConfig

retrieves a map of FADC and CFD configurations keyed on FADC ID. The FADC crate vector

of boards is passed to the DBInterface constructor to create the FADCInfo list used for many

4



VDBlib routines. Method loadCFDThresholdsmV takes a mV threshold as argument and

retrieves a map of dc thresholds keyed on CFD ID from tblCFD Threshold Lookup. Routines

to fill and query this table are in the vdbtools for admins,2 see dacq-t1:∼/liz/vdbtools.

The update methods are not used currently and other methods are used internally or for

debugging purposes.

The MySQL code is really straight-forward. Generally, we just call Guy’s routines where

needed and then place values into our existing configuration structure. The only moderately

fancy bit is the query for grabbing the CFD thresholds in one query. This takes a little

thought about join logic and looks pretty nasty written out, but can be easily tested using

the VDBTools or even better by just mucking with the mysql command line a bit. Almost

any mysql query you’ll ever want or something very similar to it exists in the VDBTools

library at this point. The only thing obnoxious about this stuff is setting up an interface for

the query while allowing all those troublesome user options.

Writes to the current configuration settings are slow because they are handled internally

line-by-line because of the way error checking and timestamping is done in VDBlib. What I

mean is that a straight insert of 500 rows of data is pretty fast, but updating and adding 500

lines one-by-one is, of course, slower. I expect there are clever ways around this; however,

it never seemed worth the time since updating the hardware settings isn’t really something

the observers need to have happen on a dime. I’d prefer they think before they set.

Gotchas Of Note:

• The use of VDB requires environment variables

There are elegant ways to handle environment variables when running remote jobs, and

then there is the way that I did it, i.e. brute force. They are currently set explicitly in

the runner script. My preferred solution of setting the VDB configuration internally to

the software fails on the crates, and I didn’t spend the time to fully debug the details.

It is possible this scheme could still work by handling the config setting in a more

2I have added some of the admin tools to the /usr/local/veritas/src install, but not all.

5



static sense, but it is also equally possible that there is something inherent in the way

VDBlib constructs the connection that is screwing this up. Anyway, went beyond my

expertise and interest - too bad.

• Auto-update of crate ID map disabled

We used to dynamically update the crate maps in the database on start-up, which was

handy, but no more! Due to the flaky FADC board ID problems, this has been rather

crudely disabled. The code is still in place, but you really get into trouble fast if you

let VDAQ load wrong ID maps.

• Ongoing VDAQ uglification program

I inherited the core code for pulling down the configs from Guy and didn’t rewrite it

initially. For reasons of maintenance, I did later make some attemt to clean this up

and standardize it to the rest of the VDAQ code, but I only got it partly tamed.

• VDB has been lizified

Ahm...I will be committing that extra method that only exists in my version of VDBlib

to the CVS repository ASAP, in fact, probably even before I send you this – only breaks

the VDBtools if someone actually updates VDBlib on dacq anyway.

Of note — Not!! but interesting all the same

The name of this class is a bit of a stretch; this is not a true C++ interface class because

it contains data members. In a related aside, I’m not actually that geeky. The only reason

I became aware of this was because I extended the VME functionality3 for the TRICE code

by using an interface class to register VME modules requiring special handling on exit with

the VME interface. This extension is useless for Veritas, but it was a kind of neat way to

make the shutdown flexible for various VME modules.

3P.S. This is irrelevant for vdaq, but TrICE exposed a couple minor bugs in VME interrupt handling. I
doubt I got around to putting my fixes in vdaq since this struck me as code you would revamp if it got used
much. There is a bug in the VME interrupt handler that allows interrupts to arrive before the count has
updated. My solution was to bump up the count prematurely and bump it down if vme interrupt attach
failed. Also the killInterruptHandler method should decrement the handle count in this scheme.

6



Also, you may note there are two constructors for the class, and they are not compatible.

Only one applies to VDAQ FADC class members. This makes sense when you realize it’s

quite handy to develop and test most of the DB crap independently of vme libraries and the

rest of the VDAQ code.

2.2 Bypass (fast-like-tha-Freeway) Threshold Setting

This is a little known but critical and yet easy kludge with only one minor gotcha. I know

that you know this stuff, but for the sake of clarity, I’m gonna set it all out. Setting the

thresholds is dog, and by that I mean old-yeller houn’ dog, slow. Here is why:

How to set CFD thresholds (most robust)

1. User selects mV threshold

2. Grab list of CFD IDs from the FADC Location and FADC CFD Relation tables

3. Fill CFD Settings for each CFD ID from respective Settings tables

4. Assign mV setting for each CFD

5. Convert physical to dc settings for each CFD Setting 4

6. Write timestamped dc settings to CFD Threshold Settings table (most time is spent

on the loading step)

7. Send command to VDAQ to read config settings

8. VDAQ reads and applies configurations

9. VDAQ returns Success/Fail to eventbuilder (no fail states defined yet...)

There are a couple steps there that we really do not need given CFD coefficients don’t

change much and for the special case of bias curves.

4This step is skipped in the current vdbtools, and the lookup table is queried instead.

7



How to set CFD Thresholds for Bias Curves

1. User selects mV threshold

2. mV Threshold passed to VDAQ via the eventbuilder

3. VDAQ grabs dc thresholds for all CFDs in crate from lookup table

4. VDAQ loads CFD thresholds

5. VDAQ returns Success/Fail to eventbuilder (no fail states defined yet...)

IMPORTANT NOTE!!! The DB CFD Settings are not updated when this happens.

Users are not given an option to set thresholds this way (unless I was ignored.) Of course an

expert can shortcut via the eventbuilder... ;-) VAC must end all bias runs by telling VDAQ

to load configurations from the database to ensure everything matches up.

Code Changes:

• SCI commands defined for passing a mV threshold request and returning status.

• New routines in various FADC classes to handle retrieving and setting the CFD thresh-

olds for crates and boards via the DB.

• The physical units option no longer makes sense with the DB configs and can actually

cause some nasty problems. I’ve disabled it and left some warnings, but you might

consider removing it.

Of Note

It is, of course, easy enough to adapt the current routines to set values across the array.

Sorry I didn’t get around to this before taking off, but I do have ulterior motives. If the VDB

tools retain flaws, ideally in the interface, then some useful person will take it up to transfer

the code into VAC as was intended. Actually, a great second-wave project for VAC+Guy

8



is speeding-up the VDB methods a notch and parallelizing this sort of access, assuming the

DB can handle it sensibly - it should or definitely could.

Gotcha: Keeping the lookup table up-to-date

This isn’t strictly a VDAQ issue, but you should be aware of it. The lookup thresholds are

obtained from a precalculated table in the database generated by me. If the coefficients for

a CFD change or new CFDs are introduced into the system, the lookup table will need to be

recalculated for those IDs. This shouldn’t come up much, and I have already generated the

lookup table for known CFD IDs.5 In a perfect world, the routines that handle loading CFD

coefficients or assigning CFD IDs to boards would check this. I have a routine that verifies

existing settings and calculates the conversions. This can be run periodically without ill effect

to be sure that things line up. SJF’s diagnostics catch CFDs that aren’t being programmed

properly so we can’t get into too much trouble.

3 Insignificant Additions to the Code: Known Kludges

• Flaky Magic Serial Signal Register Reads

We read the event mask registers something like 5 times in a row to make sure we get

it – i.e. this is really just a dumb delay. I don’t even know if this is still a problem. I

haven’t gotten around to looking at it again since bringing up the skeleton system.

• FADC boards go mental, forget ID

What is up with this? I don’t know what is causing it, but I added some fairly

obnoxious warnings in the DBInterface class to catch board ID screw-ups and to alert

the observers.

• Monitoring bad event masks and/or noise triggering due to DAT instability

Once again, we clean up the messes of others. When the DATs screw up the event mask

5I cover thresholds from 20 mV to 300 mV in 1 mV steps, and VAC knows to respect these bounds in
the bias curves, but leave it to some moron...

9



or cause noise triggering, event IDs are wacky and trigger type IDs are nonsensical.

The aux code checks for this and complains loudly. I added some extra printing that

allows one to browse the logs and check the L3 trigger count against our local C/T

trigger counts in each crate. They should match, but we sometimes lose an L3 trigger,

probably due o DAT transmission issues in one direction or the other. My best working

hypothesis is that a long busy signal may sometimes drop out allowing L3 to trigger a

telescope when it will be locally vetoed.

4 OMG Scripts!!!

I think I’ve mangled every script we have in some fashion. A couple of them are new to the

array and some are pretty recent. Let’s go reverse chronologically on the last touch by me.

All my scripts are available at www.hep.anl.gov/ehays/vdaq-scripts.

10

http://www.hep.anl.gov/ehays/vdaq-scripts


update-vdaq-all Apr. 2007 dacq-t1 ∼/liz/vdaq-scripts

Purpose: run svn update on all 4 dacq machines and report anything egregious.

If update is successful, builds VDAQ. Records output locally for easy perusal.

stopVDAQ.pl Jan. 2007 arrayctl /usr/local/veritas/bin

Purpose: run vdaq-end-night on specified telescopes from arrayctl

Known Issues: Observers are not fans of the reporting and neither am I.

SetVDAQDisk.pl Dec. 2006 VME crate disks /13

Purpose: Alters all necessary info to identify a newly cloned or existing disk with a

given telescope and crate. Does not handle the mysql libs since that is dacq dependent

and is more of an update than an install function.

vdaq-end-night Nov. 2006 dacq-tX ∼/run-scripts/

Purpose: Halts crates, syncs logs to dacq, and powers down crates. A possible flaw is

that this script and sub-scripts have telescopes hardcoded. Granted a one-line perl

command will update them to a new telescope. Sub-scripts are fairly obvious,

Stop VDAQ.pl, Copy Logs.pl, and Halt Crates.pl.

5 Unresolved Bits and Bots

5.1 State of the Repository

We are using the T2 branch as our deployment version everywhere. The last time I was in

AZ6 I synced up the code amongst all the telescopes and resolved any significant differences.

I put together a simple bit of script www.hep.anl.gov/ehays/vdaq-scripts/update vdaq all

to do array-wide updates. It logs info from all scopes to the directory it runs in. (hm.

timestamping these would have been handy; I overwrite previous info. oh well.) and parses

out any reported conflicts. I believe there have been only two software changes since then.

• T3:: main aux code:: a ’fix’ that doesn’t fix much relating to the GPS clock.

6 Gawd! has it been that long...getting telescope withdrawal shakes just thinking about it...

11

http://www.hep.anl.gov/ehays/vdaq-scripts/update_vdaq_all


• T1:: main :: SPW disabled VME shutdown via SCI, but I recall undoing this later?

Unfortunately for you and me both, I am not much of a code czar and am in remiss for not

maintaining things a bit more tidily. Tags of major revisions would have been kind of nice

in hindsight.

5.2 VDB/MySQL library versions on dacq and crates

Although all the telescopes are ’the same’, they are not exactly the same as you’re well

aware. The most obnoxious difference relating to my stuff is that each RH install on the

dacq machine ends up with a different version of the mysql client libs. The libs on the crates

should match those on dacq and can be copied over. If VDAQ is hanging on the initial

configuration download, this might be the reason. Another problem encountered on install

is that db.vts should be in the hosts file. Jeremy tends to wipe out the hosts file and replace

with the dns, but I like to keep IPs relevant to VDAQ hardcoded since they are very limited

in number and don’t tend to change. Also, the dns machine in the past was sometimes flaky

and the last thing I want to debug for the observers is some terrible and catastrophic problem

in vdaq that turns out to be some flaky dns machine. I had the vague goal that vdaq should

be as autonomous a system as possible and should still be runnable in the absence of the

network/VAC/dacq/db/etc. for purposes of basic debugging and whatever the future may

hold.

My attitude toward the VDB lib was to never update it. Nothing related to FADC/CFD

routines has changed in years now.

5.3 VDBTools are not included in VDAQ

I have kept these independently of VDAQ for obvious reasons and consider this a feature.

They fall outside the bounds of the subproject, and I figure all the better to keep them as

separated and outlawlike as possible to encourage later absorption into a more fitting home.

12



All documentation is in the code or the wiki – will update this a bit in the next week to

prep for observing.

5.4 FADC-related ’obnoxieties’

The FADC boards are all the same revision. Except when they are not.

• All the early board IDs have been retrofitted to the latest revision. Previous adjust-

ments for FPGA revisions in our software, used on Board IDs < 6/< 28, have been

disabled. I believe that I propagated this change to all telescopes, but it is something

to consider if a newly swapped low number board looks wacky. (Newly redone boards

only appear on T3/T4 at the moment, and so I’ll only swear to those.)

• The ring buffer in the latest revision boards (new for T4 and redone prototype) is 16

kB and not 32 kB.

• Jim will swear up and down that the high multiplicity trigger works and is just sitting

there being ignored by evil old us, but actually Paul disabled this functionality (perhaps

to fix CBLT/ZS timing probs?). Jim and Amanda looked at this circa. Feb. 2006 and

found there was no high multiplicity output being generated by the C/T boards.

5.5 A many-windowed VDAQ

I know there are occasional grumblings about all the VDAQ windows. I almost swutched this

over in Feb. 2006. At the point where I considered going headless and would have had time to

tweak it, I had to back off due to too many dumb problems with DATs/FADCs/trigger/crate

drops/you name it. If we didn’t end up debugging every dang thing both up and downstream

of us, this might be more feasible. The observers tend to ignore things even more than

normal without the visual feedback and are more likely to jump to the wrong conclusions

when things go ’pear-shaped’. Clearly we’re not going to stream our lovely error messages

to VAC. Granted, with some devoted VAC work, we could set up some sensible error codes

13



in a fairly rational way. It wouldn’t be too bad on certain error conditions to send an SCI

ping to dacq. However, it doesn’t really make sense to try to define standard error codes

until the DAT situation is resolved or it is clear that there won’t be any reoslution anytime

soon. The real problem is that this kind of update requires a VDAQ savvy person hanging

around for a bit and getting the bugs worked out. Unfortunately, we didn’t hit semi-stable

operation before I got busy. Even the problem of of wacky fail states could be countered

with some creative error checking and a centralized logging interface – oh well.

6 Conclusion

So that’s all she wrote. I’ve highlighted the bits of code I’ve most impacted and laid out

some of the remaining issues as I see them. I have a couple outstanding issues to fix in the

VDBtools – I owe Michelle Hui a tool for loading the laser lookbacks – but that’s not your

problem. As I said, I’ll give a run through the documentation on the Wiki relating to my

bits this week and get it up to spec. Have fun.

Vivat Veritas Hephaestus gratia.

14


	Introduction
	Significant Additions to the Code
	Configuration Interface to MySQL Database
	Bypass (fast-like-tha-Freeway) Threshold Setting

	Insignificant Additions to the Code: Known Kludges
	OMG Scripts!!!
	Unresolved Bits and Bots
	State of the Repository
	VDB/MySQL library versions on dacq and crates
	VDBTools are not included in VDAQ
	FADC-related 'obnoxieties'
	A many-windowed VDAQ

	Conclusion

